Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917250

RESUMEN

Measuring trace element concentrations in tissue can be a valuable approach to monitor animal health status. Temporal variation in the absorption, transport, and storage of elements between different tissues can, however, complicate the assessment of element-health relationships. Here, we measured concentrations of selected essential (copper (Cu), zinc (Zn), selenium (Se)) and non-essential (arsenic (As), cadmium (Cd), lead (Pb)) trace elements within blood, liver, kidney, and hair of fallow deer (Dama dama; N=20) and red deer (Cervus elaphus; N=21). Using multivariate regression and structural equation models, we estimated direct and indirect linkages between tissue-specific trace element profiles and long- (body condition) and short-term (serum protein biomarkers for acute inflammation, infection, and malnutrition) health indicators. Trace element concentrations varied markedly and were weakly correlated among tissues, with the exception of Se. After accounting for sex- and site-differences in trace element concentrations, body condition of red deer was directly, and positively, associated to trace element status in liver and hair, but not in kidney. For both deer species, trace element status in blood was directly linked to serum protein status with an indirect positive association to deer body condition. For fallow deer, no direct association between trace element status and body condition was detected in any of the tissues, possibly because of elemental homeostasis, and because all individuals were in good clinical health. This study shows that hair can serve as an effective, non-invasive, biomarker in deer health assessments, yet, to fully uncover trace element-health relationships a variety of sample matrices is preferred.

2.
Sci Total Environ ; 903: 166567, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633375

RESUMEN

The bioavailability of essential and non-essential elements in vegetation is expected to influence the performance of free-ranging terrestrial herbivores. However, attempts to relate the use of geochemical landscapes by animal populations directly to reproductive output are currently lacking. Here we measured concentrations of 14 essential and non-essential elements in soil and vegetation samples collected in the Zackenberg valley, northeast Greenland, and linked these to environmental conditions to spatially predict and map geochemical landscapes. We then used long-term (1996-2021) survey data of muskoxen (Ovibos moschatus) to quantify annual variation in the relative use of essential and non-essential elements in vegetated sites and their relationship to calf recruitment the following year. Results showed that the relative use of the geochemical landscape by muskoxen varied substantially between years and differed among elements. Selection for vegetated sites with higher levels of the essential elements N, Cu, Se, and Mo was positively linked to annual calf recruitment. In contrast, selection for vegetated sites with higher concentrations of the non-essential elements As and Pb was negatively correlated to annual calf recruitment. Based on the concentrations measured in our study, we found no apparent associations between annual calf recruitment and levels of C, Mn, Co, Zn, Cd, Ba, Hg, and C:N ratio in the vegetation. We conclude that the spatial distribution and access to essential and non-essential elements are important drivers of reproductive output in muskoxen, which may also apply to other wildlife populations. The value of geochemical landscapes to assess habitat-performance relationships is likely to increase under future environmental change.

3.
J Anim Ecol ; 92(10): 1937-1953, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454311

RESUMEN

Animal habitat selection-central in both theoretical and applied ecology-may depend on behavioural motivations such as foraging, predator avoidance, and thermoregulation. Step-selection functions (SSFs) enable assessment of fine-scale habitat selection as a function of an animal's movement capacities and spatiotemporal variation in extrinsic conditions. If animal location data can be associated with behaviour, SSFs are an intuitive approach to quantify behaviour-specific habitat selection. Fitting SSFs separately for distinct behavioural states helped to uncover state-specific selection patterns. However, while the definition of the availability domain has been highlighted as the most critical aspect of SSFs, the influence of accounting for behaviour in the use-availability design has not been quantified yet. Using a predator-free population of high-arctic muskoxen Ovibos moschatus as a case study, we aimed to evaluate how (1) defining behaviour-specific availability domains, and/or (2) fitting separate behaviour-specific models impacts (a) model structure, (b) estimated selection coefficients and (c) model predictive performance as opposed to behaviour-unspecific approaches. To do so, we first applied hidden Markov models to infer different behavioural modes (resting, foraging, relocating) from hourly GPS positions (19 individuals, 153-1062 observation days/animal). Using SSFs, we then compared behaviour-specific versus behaviour-unspecific habitat selection in relation to terrain features, vegetation and snow conditions. Our results show that incorporating behaviour into the definition of the availability domain primarily impacts model structure (i.e. variable selection), whereas fitting separate behaviour-specific models mainly influences selection strength. Behaviour-specific availability domains improved predictive performance for foraging and relocating models (i.e. behaviours with medium to large spatial displacement), but decreased performance for resting models. Thus, even for a predator-free population subject to only negligible interspecific competition and human disturbance we found that accounting for behaviour in SSFs impacted model structure, selection coefficients and predictive performance. Our results indicate that for robust inference, both a behaviour-specific availability domain and behaviour-specific model fitting should be explored, especially for populations where strong spatiotemporal selection trade-offs are expected. This is particularly critical if wildlife habitat preferences are estimated to inform management and conservation initiatives.

4.
Int J Parasitol Parasites Wildl ; 21: 143-152, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37215531

RESUMEN

Parasites can exert a substantial influence on the ecology of wildlife populations by altering host condition. Our objectives were to estimate single and multiparasite-condition relationships for fallow deer (Dama dama) and red deer (Cervus elaphus) in Denmark and to assess potential health effects along the parasite burden gradient. Fallow deer hosted on average two endoparasite taxa per individual (min = 0, max = 5) while red deer carried on average five parasite taxa per individual (min = 2, max = 9). Body condition of both deer species was negatively related to presence of Trichuris ssp. eggs while body condition of red deer was positively related to antibodies of the protozoan Toxoplasma gondii. For the remaining parasite taxa (n = 12), we either found weak or no apparent association between infection and deer body condition or low prevalence levels restricted formal testing. Importantly, we detected a strong negative relationship between body condition and the sum of endoparasite taxa carried by individual hosts, a pattern that was evident in both deer species. We did not detect systemic inflammatory reactions, yet serology revealed reduced total protein and iron concentrations with increased parasite load in both deer species, likely due to maldigestion of forage or malabsorption of nutrients. Despite moderate sample sizes, our study highlights the importance of considering multiparasitism when assessing body condition impacts in deer populations. Moreover, we show how serum chemistry assays are a valuable diagnostic tool to detect subtle and sub-clinical health impacts of parasitism, even at low-level infestation.

5.
Sci Total Environ ; 855: 158936, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152860

RESUMEN

Human activities at sea are intensifying and diversifying. This is leading to more complex interactions of anthropogenic impacts requiring adaptable management interventions to mitigate their cumulative effects on biodiversity conservation and restoration objectives. Bycatch remains the dominant conservation threat for coastal cetaceans. Additionally, the indirect impact of repeated exposure to disturbances, particularly acoustic disturbances, can affect cetacean population growth and therefore conservation objectives. Pingers are used to ensonify nets to provide an effective mitigation of bycatch risk. As those become more prevalent across fisheries at risk to catch for example harbour porpoises, pingers become contributors to the anthropogenic noise landscape which may affect the vital rates of this species as well. Currently, we do not know how to best balance pinger prevalence to minimise both bycatch rate and the population consequences of acoustic disturbance (PCoD). Here we use an agent-based model to determine how pinger prevalence in nets can be adjusted to minimise bycatch rate and noise disturbance propagating to affect population growth for harbour porpoises. We show that counter-intuitively bycatch rate can increase at lower pinger prevalence. When ecological conditions are such that PCOD can emerge, higher prevalence of pingers can lead to indirect effects on population growth. This would result from condition-mediated decreased reproductive potential. Displacing fishing effort, via time-area closure, can be an effective mitigation strategy in these circumstances. These findings have important implications for current management plans which, for practical consideration, may lead to lower overall pinger prevalence at sea. This study also shows that estimating the reproductive potential of the species should be incorporated in bycatch monitoring programmes. We now need to better understand how physiological condition affect reproductive decisions and behavioural responses to noise in cetaceans to better appraise and estimate the cumulative impacts of bycatch and its mitigations.


Asunto(s)
Phocoena , Animales , Humanos , Phocoena/fisiología , Explotaciones Pesqueras , Cetáceos , Ruido , Reproducción
6.
Glob Ecol Biogeogr ; 31(8): 1526-1541, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36247232

RESUMEN

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.

7.
Ecol Evol ; 12(7): e9083, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35813921

RESUMEN

Understanding how environmental and climate change can alter habitat overlap of marine predators has great value for the management and conservation of marine ecosystems. Here, we estimated spatiotemporal changes in habitat suitability and inter-specific overlap among three marine predators: Baltic gray seals (Halichoerus grypus), harbor seals (Phoca vitulina), and harbor porpoises (Phocoena phocoena) under contemporary and future conditions. Location data (>200 tagged individuals) were collected in the southwestern region of the Baltic Sea; one of the fastest-warming semi-enclosed seas in the world. We used the maximum entropy (MaxEnt) algorithm to estimate changes in total area size and overlap of species-specific habitat suitability between 1997-2020 and 2091-2100. Predictor variables included environmental and climate-sensitive oceanographic conditions in the area. Sea-level rise, sea surface temperature, and salinity data were taken from representative concentration pathways [RCPs] scenarios 6.0 and 8.5 to forecast potential climate change effects. Model output suggested that habitat suitability of Baltic gray seals will decline over space and time, driven by changes in sea surface salinity and a loss of currently available haulout sites following sea-level rise in the future. A similar, although weaker, effect was observed for harbor seals, while suitability of habitat for harbor porpoises was predicted to increase slightly over space and time. Inter-specific overlap in highly suitable habitats was also predicted to increase slightly under RCP scenario 6.0 when compared to contemporary conditions, but to disappear under RCP scenario 8.5. Our study suggests that marine predators in the southwestern Baltic Sea may respond differently to future climatic conditions, leading to divergent shifts in habitat suitability that are likely to decrease inter-specific overlap over time and space. We conclude that climate change can lead to a marked redistribution of area use by marine predators in the region, which may influence local food-web dynamics and ecosystem functioning.

8.
Oecologia ; 195(4): 927-935, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33609167

RESUMEN

Habitat selection is expected to balance benefits and costs that maximizes fitness. Using a rare data set on collared lemming (Dicrostonyx groenlandicus) winter nest location spanning more than two decades, we show that lemmings actively select for Salix snow beds, likely due to its favorable micro-climate, and that lemming habitat selection was density-dependent. Lemmings nevertheless exhibited some flexibility in their habitat selection, which appeared to be influenced by the year-to-year variation in snow conditions. The likelihood of both lemming breeding and nest predation by stoats (Mustela erminea) was not directly linked to habitat despite a delicate interplay between habitat, nest size, breeding, and predation. Hence, the larger lemming nests were found in Salix snow beds, and these were more often used for breeding, but both larger nests and nests used for breeding were also predated more often than other nests. Our study provides a clear example of how density-dependent habitat selection acts to balance fitness in the various habitats utilized by collared lemmings.


Asunto(s)
Fitomejoramiento , Conducta Predatoria , Animales , Arvicolinae , Ecosistema , Estaciones del Año
9.
Ecol Evol ; 11(1): 338-351, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437433

RESUMEN

Animals have adapted behavioral and physiological strategies to conserve energy during periods of adverse conditions. Heterothermy is one such adaptation used by endotherms. While heterothermy-fluctuations in body temperature and metabolic rate-has been shown in large vertebrates, little is known of the costs and benefits of this strategy, both in terms of energy and in terms of fitness. Hence, our objective was to model the energetics of seasonal heterothermy in the largest Arctic ungulate, the muskox (Ovibos moschatus), using an individual-based energy budget model of metabolic physiology. We found that the empirically based drop in body temperature (winter max ~-0.8°C) overwinter in adult females resulted in substantial fitness benefits in terms of reduced daily energy expenditure and body mass loss. Body mass and energy reserves were 8.98% and 14.46% greater in modeled heterotherms compared to normotherms by end of winter. Based on environmental simulations, we show that seasonal heterothermy can, to some extent, buffer the negative consequences of poor prewinter body condition or reduced winter food accessibility, leading to greater winter survival (+20%-30%) and spring energy reserves (+10%-30%), and thus increased probability of future reproductive success. These results indicate substantial adaptive short-term benefits of seasonal heterothermy at the individual level, with potential implications for long-term population dynamics in highly seasonal environments.

10.
Ambio ; 50(2): 393-399, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32885402

RESUMEN

Ecosystems around the world are increasingly exposed to multiple, often interacting human activities, leading to pressures and possibly environmental state changes. Decision support tools (DSTs) can assist environmental managers and policy makers to evaluate the current status of ecosystems (i.e. assessment tools) and the consequences of alternative policies or management scenarios (i.e. planning tools) to make the best possible decision based on prevailing knowledge and uncertainties. However, to be confident in DST outcomes it is imperative that known sources of uncertainty such as sampling and measurement error, model structure, and parameter use are quantified, documented, and addressed throughout the DST set-up, calibration, and validation processes. Here we provide a brief overview of the main sources of uncertainty and methods currently available to quantify uncertainty in DST input and output. We then review 42 existing DSTs that were designed to manage anthropogenic pressures in the Baltic Sea to summarise how and what sources of uncertainties were addressed within planning and assessment tools. Based on our findings, we recommend future DST development to adhere to good modelling practise principles, and to better document and communicate uncertainty among stakeholders.


Asunto(s)
Ecosistema , Solución de Problemas , Países Bálticos , Humanos , Incertidumbre
11.
Glob Chang Biol ; 27(9): 1755-1771, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33319455

RESUMEN

Species conservation in a rapidly changing world requires an improved understanding of how individuals and populations respond to changes in their environment across temporal scales. Increased warming in the Arctic puts this region at particular risk for rapid environmental change, with potentially devastating impacts on resident populations. Here, we make use of a parameterized full life cycle, individual-based energy budget model for wild muskoxen, coupling year-round environmental data with detailed ontogenic metabolic physiology. We show how winter food accessibility, summer food availability, and density dependence drive seasonal dynamics of energy storage and thus life history and population dynamics. Winter forage accessibility defined by snow depth, more than summer forage availability, was the primary determinant of muskox population dynamics through impacts on calf recruitment and longer term carryover effects of maternal investment. Simulations of various seasonal snow depth and plant biomass and quality profiles revealed that timing of and improved/limited winter forage accessibility had marked influence on calf recruitment (±10-80%). Impacts on recruitment were the cumulative result of condition-driven reproductive performance at multiple time points across the reproductive period (ovulation to calf weaning) as a trade-off between survival and reproduction. Seasonal and generational condition effects of snow-rich winters interacted with age structure and density to cause pronounced long-term consequences on population growth and structure, with predicted population recovery times from even moderate disturbances of 10 years or more. Our results show how alteration in winter forage accessibility, mediated by snow depth, impacts the dynamics of northern herbivore populations. Further, we present here a mechanistic and state-based model framework to assess future scenarios of environmental change, such as increased or decreased snowfall or plant biomass and quality to impact winter and summer forage availability across the Arctic.


Asunto(s)
Herbivoria , Nieve , Animales , Regiones Árticas , Niño , Femenino , Dinámica Poblacional , Estaciones del Año
12.
R Soc Open Sci ; 7(10): 201614, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33204486

RESUMEN

The existence and persistence of rhythmicity in animal activity during phases of environmental change is of interest in ecology, evolution and chronobiology. A wide diversity of biological rhythms in response to exogenous conditions and internal stimuli have been uncovered, especially for polar vertebrates. However, empirical data supporting circadian organization in behaviour of large ruminating herbivores remains inconclusive. Using year-round tracking data of the largest Arctic ruminant, the muskox (Ovibos moschatus), we modelled rhythmicity as a function of behaviour and environmental conditions. Behavioural states were classified based on patterns in hourly movements, and incorporated within a periodicity analyses framework. Although circadian rhythmicity in muskox behaviour was detected throughout the year, ultradian rhythmicity was most prevalent, especially when muskoxen were foraging and resting in mid-winter (continuous darkness). However, when combining circadian and ultradian rhythmicity together, the probability of behavioural rhythmicity declined with increasing photoperiod until largely disrupted in mid-summer (continuous light). Individuals that remained behaviourally rhythmic during mid-summer foraged in areas with lower plant productivity (NDVI) than individuals with arrhythmic behaviour. Based on our study, we conclude that muskoxen may use an interval timer to schedule their behavioural cycles when forage resources are low, but that the importance and duration of this timer are reduced once environmental conditions allow energetic reserves to be replenished ad libitum. We argue that alimentary function and metabolic requirements are critical determinants of biological rhythmicity in muskoxen, which probably applies to ruminating herbivores in general.

13.
Environ Manage ; 66(6): 1024-1038, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32910293

RESUMEN

Decision-support tools (DSTs) synthesize complex information to assist environmental managers in the decision-making process. Here, we review DSTs applied in the Baltic Sea area, to investigate how well the ecosystem approach is reflected in them, how different environmental problems are covered, and how well the tools meet the needs of the end users. The DSTs were evaluated based on (i) a set of performance criteria, (ii) information on end user preferences, (iii) how end users had been involved in tool development, and (iv) what experiences developers/hosts had on the use of the tools. We found that DSTs frequently addressed management needs related to eutrophication, biodiversity loss, or contaminant pollution. The majority of the DSTs addressed human activities, their pressures, or environmental status changes, but they seldom provided solutions for a complete ecosystem approach. In general, the DSTs were scientifically documented and transparent, but confidence in the outputs was poorly communicated. End user preferences were, apart from the shortcomings in communicating uncertainty, well accounted for in the DSTs. Although end users were commonly consulted during the DST development phase, they were not usually part of the development team. Answers from developers/hosts indicate that DSTs are not applied to their full potential. Deeper involvement of end users in the development phase could potentially increase the value and impact of DSTs. As a way forward, we propose streamlining the outputs of specific DSTs, so that they can be combined to a holistic insight of the consequences of management actions and serve the ecosystem approach in a better manner.


Asunto(s)
Ecosistema , Eutrofización , Biodiversidad , Contaminación Ambiental , Humanos , Incertidumbre
14.
Mov Ecol ; 8: 25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32518653

RESUMEN

BACKGROUND: In highly seasonal environments, animals face critical decisions regarding time allocation, diet optimisation, and habitat use. In the Arctic, the short summers are crucial for replenishing body reserves, while low food availability and increased energetic demands characterise the long winters (9-10 months). Under such extreme seasonal variability, even small deviations from optimal time allocation can markedly impact individuals' condition, reproductive success and survival. We investigated which environmental conditions influenced daily, seasonal, and interannual variation in time allocation in high-arctic muskoxen (Ovibos moschatus) and evaluated whether results support qualitative predictions derived from upscaled optimal foraging theory. METHODS: Using hidden Markov models (HMMs), we inferred behavioural states (foraging, resting, relocating) from hourly positions of GPS-collared females tracked in northeast Greenland (28 muskox-years). To relate behavioural variation to environmental conditions, we considered a wide range of spatially and/or temporally explicit covariates in the HMMs. RESULTS: While we found little interannual variation, daily and seasonal time allocation varied markedly. Scheduling of daily activities was distinct throughout the year except for the period of continuous daylight. During summer, muskoxen spent about 69% of time foraging and 19% resting, without environmental constraints on foraging activity. During winter, time spent foraging decreased to 45%, whereas about 43% of time was spent resting, mediated by longer resting bouts than during summer. CONCLUSIONS: Our results clearly indicate that female muskoxen follow an energy intake maximisation strategy during the arctic summer. During winter, our results were not easily reconcilable with just one dominant foraging strategy. The overall reduction in activity likely reflects higher time requirements for rumination in response to the reduction of forage quality (supporting an energy intake maximisation strategy). However, deep snow and low temperatures were apparent constraints to winter foraging, hence also suggesting attempts to conserve energy (net energy maximisation strategy). Our approach provides new insights into the year-round behavioural strategies of the largest Arctic herbivore and outlines a practical example of how to approximate qualitative predictions of upscaled optimal foraging theory using multi-year GPS tracking data.

15.
Sci Rep ; 10(1): 1514, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001737

RESUMEN

For free-ranging animals living in seasonal environments, hypometabolism (lowered metabolic rate) and hypothermia (lowered body temperature) can be effective physiological strategies to conserve energy when forage resources are low. To what extent such strategies are adopted by large mammals living under extreme conditions, as those encountered in the high Arctic, is largely unknown, especially for species where the gestation period overlaps with the period of lowest resource availability (i.e. winter). Here we investigated for the first time the level to which high arctic muskoxen (Ovibos moschatus) adopt hypothermia and tested the hypothesis that individual plasticity in the use of hypothermia depends on reproductive status. We measured core body temperature over most of the gestation period in both free-ranging muskox females in Greenland and captive female muskoxen in Alaska. We found divergent overwintering strategies according to reproductive status, where pregnant females maintained stable body temperatures during winter, while non-pregnant females exhibited a temporary decrease in their winter body temperature. These results show that muskox females use hypothermia during periods of resource scarcity, but also that the use of this strategy may be limited to non-reproducing females. Our findings suggest a trade-off between metabolically-driven energy conservation during winter and sustaining foetal growth, which may also apply to other large herbivores living in highly seasonal environments elsewhere.


Asunto(s)
Hipotermia/metabolismo , Reproducción/fisiología , Rumiantes/fisiología , Alaska , Animales , Regiones Árticas , Temperatura Corporal , Femenino , Groenlandia , Herbivoria , Embarazo , Estaciones del Año
16.
Environ Res ; 183: 109194, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32036272

RESUMEN

Mining activities can cause adverse and long-lasting environmental impacts and detailed monitoring is therefore essential to assess the pollution status of mining impacted areas. Here we evaluated the efficacy of two predatory fish species (Gadus ogac i.e. Greenland cod and Myoxocephalus scorpius i.e. shorthorn sculpin) as biomonitors of mining derived metals (Pb, Zn, Cd and Hg) by measuring concentrations in blood, liver, muscle and otoliths along a distance gradient near the former Black Angel Pb-Zn mine (West Greenland). We detected metals in all tissues (except Cd and Hg in otoliths) and sculpin generally displayed higher concentrations than cod. For both species, concentrations were generally highest closest to the dominant pollution source(s) and gradually decreased away from the mine. The clearest gradient was observed for Pb in blood and liver (both species), and for Pb in otoliths (sculpin only). Similar to dissolved concentrations in seawater (but in contrast to bottom sediment), no significant decrease was found for Zn, Cd and Hg in any of the tissues. This demonstrates that by including tissues of blood (representing recent accumulation) and otolith (representing more long-term exposure signals) in the sampling collection, the temporal information on contaminant exposure and accumulation can be extended. We therefore conclude that both fish species are suitable as biomonitors near Arctic mine sites and, moreover, that blood and otoliths can serve as important supplementary monitoring tissues (in addition to liver and muscle traditionally sampled) as they provide extended temporal information on recent to long-term contaminant exposure.


Asunto(s)
Peces , Metales Pesados , Membrana Otolítica , Contaminantes del Agua , Animales , Regiones Árticas , Bioacumulación , Monitoreo del Ambiente , Groenlandia , Hígado , Metales , Metales Pesados/farmacocinética , Minería , Membrana Otolítica/química , Contaminantes del Agua/farmacocinética
17.
Front Zool ; 17: 6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095154

RESUMEN

BACKGROUND: Research of many mammal species tends to focus on single habitats, reducing knowledge of ecological flexibility. The Javan lutung (Trachypithecus auratus) is considered a strict forest primate, and little is known about populations living in savannah. In 2017-2018, we investigated the density and distribution of Javan lutung in Baluran National Park, Indonesia. We conducted ad libitum follows and line transect distance sampling with habitat suitability analysis of Javan lutung. RESULTS: Estimated density was 14.91 individuals km- 2 (95% CI 7.91-28.08), and estimated population size was 3727 individuals (95% CI 1979 - 7019). Long-tailed macaque (Macaca fascicularis) habitat suitability was the main driver of lutung habitat suitability as the probability of lutung occurrence increased greatly with macaque habitat suitability. Distance to roads, and distance to secondary forest had a negative relationship with lutung occurrence. Lutung habitat suitability decreased with increasing elevation, however, Mt Baluran and the primary forest on Mt Baluran was under-sampled due to treacherous conditions. Follows of six focus groups revealed considerable use of savannah, with terrestrial travel. The follows also revealed polyspecific associations with long-tailed macaques through shared sleeping sites and inter-specific vocalisations. CONCLUSIONS: Our study provides new knowledge on the general ecology of Javan lutung, such as use of savannah habitats, underlining our need to branch out in our study sites to understand the flexibility and adaptability of our study species. Another undocumented behaviour is the polyspecific association with long-tailed macaques. We encourage more research on this subject.

18.
Mar Pollut Bull ; 150: 110604, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31671350

RESUMEN

Due to increased sea transport and offshore gas and oil exploration, the Arctic is facing an unprecedented risk of marine oil spills. Although beached oil spills can lead to acute and chronic impacts on intertidal ecosystems, the effects of oil spills on macro-algae in Arctic ecosystems is lacking. Here, we assessed the effect and response of the tidal macro-algae Fucus distichus to oiling, i.e. self-cleaning potential by seawater wash and photosynthetic activity. Oiling with four oil types (ANS, Grane, IFO30 and MGO) was simulated by exposing F. distichus tips to oil. Oil removal half-times ranged between 0.8 - 4.5 days, indicating that oiling of macro-algae with the tested oils was short-term. Further, Grane oil mostly inhibited photosynthetic activity whereas oil from ANS, IFO30 and MGO stimulated it. The photosynthetic activity of F. distichus continued to be affected (inhibited or stimulated), even after oil on the tip surface was washed off.


Asunto(s)
Fucus/fisiología , Contaminación por Petróleo , Regiones Árticas , Ecosistema , Monitoreo del Ambiente , Fotosíntesis
19.
Environ Res ; 173: 246-254, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928855

RESUMEN

Persistent organic pollutants (POPs) are found in high concentrations in the Artic. Polar bears (Ursus maritimus) are one of the most exposed mammals in the Arctic and are thereby vulnerable to reproductive disruption. The aim of this study was to investigate male polar bear reproduction based on a detailed evaluation of testis histology and to assess possible effects of environmental chemicals on male polar bear reproduction. Reproductive groups that were identified based on histology were as follows: actively reproductive (REP), non-reproductive either with degenerated testes (DEG), undeveloped seminiferous tubules (UND), or morphology in-transition (INT). Categorization into these groups was supported by significant differences in testis and baculum measurements among REP, DEG, and UND, as well as differences in the area and diameter of seminiferous tubules among REP, DEG, and UND. These results show that it is possible to identify the reproductive stage in polar bears even if capture date and or age is lacking. Based on testis morphology we suggest that adult male polar bears from East Greenland have active spermatogenesis in February to June, and inactive degenerated testes in August to January. January to February was the main period of reproductive transition, characterised by a shift between inactive and active spermatogenesis. Baculum and testis size measurements decreased significantly with increasing concentrations of the chlordane metabolite oxychlordane, suggesting a potential impact on male reproductive success. Half of the investigated polar bears in REP group displayed signs of disorganization of the spermatogenesis which might be a sign of disrupted reproduction. However, no correlations with levels of the investigated POPs were detected. Reproductive organ measurements in polar bears differed significantly between REP and DEG groups, which cannot be explained by age, and therefore should be considered when investigating the effect of POPs on male reproduction.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Testículo , Ursidae , Animales , Regiones Árticas , Groenlandia , Masculino , Estaciones del Año
20.
Sci Rep ; 9(1): 5642, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948786

RESUMEN

Classifying movement behaviour of marine predators in relation to anthropogenic activity and environmental conditions is important to guide marine conservation. We studied the relationship between grey seal (Halichoerus grypus) behaviour and environmental variability in the southwestern Baltic Sea where seal-fishery conflicts are increasing. We used multiple environmental covariates and proximity to active fishing nets within a multivariate hidden Markov model (HMM) to quantify changes in movement behaviour of grey seals while at sea. Dive depth, dive duration, surface duration, horizontal displacement, and turning angle were used to identify travelling, resting and foraging states. The likelihood of seals foraging increased in deeper, colder, more saline waters, which are sites with increased primary productivity and possibly prey densities. Proximity to active fishing net also had a pronounced effect on state occupancy. The probability of seals foraging was highest <5 km from active fishing nets (51%) and decreased as distance to nets increased. However, seals used sites <5 km from active fishing nets only 3% of their time at sea highlighting an important temporal dimension in seal-fishery interactions. By coupling high-resolution oceanographic, fisheries, and grey seal movement data, our study provides a scientific basis for designing management strategies that satisfy ecological and socioeconomic demands on marine ecosystems.


Asunto(s)
Conducta Animal/clasificación , Conservación de los Recursos Naturales/métodos , Phocidae/psicología , Animales , Océano Atlántico , Países Bálticos , Conservación de los Recursos Naturales/tendencias , Buceo , Ecología , Ecosistema , Explotaciones Pesqueras/tendencias , Alimentos Marinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...